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Technical Note No. GW 397

January, 1956

ROYAL ATRCRAFT ESTABIISHMENT, FARNBOROUGH

Preliminary Design and Analysis of Heading Control Systems
for a Jet Controlled Test Vehicle (RTV1 J)

by
A+ P. Maclaren, B.Sc., A.M.I.E.E.

and
Je He W. Shamnon, B.E.(Mech.), B.E,(4ero.).

SUMMARY,

As part of the supporting experimental programme for ballistic missile
development, it is intended to control the heading of unboosted, vertically-
launched, wingless RTV1 missiles by means of rocket motor deflection. A
separate system of air jets will be used for roll stabilisation.

This note describes in some detail the preliminary design and analysis
of the proposed pitoh and yaw control system. Frequency response techniques
are used in the basic design of the system. From this analysis, in whioch
aerodynamic forces are negleoted, suitsble values of loop gain for a range

of rocket motor servo bandwidths are determined. Two possible systems, with -

and without integral of error control, are considered and their relative
merits are illustrated by comparing the deviations from a vertical trajectory
caused by an initial heading error and & control system bias. These simpli~
fied trajectory ocalculations indicate that the ocontrol system including
integral of error is to be preferred. In the final section, the effects of
aerodynamic forces, under particular conditions of flight, on the stability
of the proposed system are examined.

It is concluded that a stable heading ocontrol system for aerodynamically
unstable RIV{ test vehiocles cen be developed along the lines proposed in this
note, without demanding excessively high component performances. Further
work will include studies of the effects of body flexure on the stability of
the system and simulator tests in which some of the actual components will
be inocorporated in the ocontrol loop.
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1 Introduction

In fl%.gh‘b trials to study the use of rocket motor deflection as a means
of control’, it is proposed that modified RTVY test vehicles shall be
launched yertically from a zero length launcher. No boost will be used and
the missile longitudinal acceleration at take-off will be less than jg.

For a typical case a thrust duration of 2l seconds may be expeoted to glve

a speed of the order of 700 ft/sec and an altitude of about 8,000 £t at
all-burnt. In these experiments, there will be an initial period of flight
in which the aerodynamic forces will be negligible. In this note, therefore,
the analysis on which the control system design is based has been simplified
by neglecting aerodynemic forces in the first instence. The effeot of
asrodynamic: forces on the performance of the proposed control system, for one
partioular flight sondition, is examined subsequently. For these trials the
normal RTVY wings and fins will be removed and consequently the modified
vehiole will be aerodynamically unstable,

The missile will be roll stabilised to a gyro datum by means of a
separate system of air jets. The design of the latter is outside the scope
of this note. For lateral control the missils heading angle will be con-
trolled in two orthogonel planes, referred to as the pitch and yaw planes.

As the configuration is symmetriocal, control in one plane only is considered,
the system in the other plane being assumed to be identical. Cross-coupling
effects are not included in the analysis as no relisble data on these are
available.

Two possible types of lateral control system are considered. In the
first, rocket motor deflection proportional to heading angle error, sensed by
a free gyroscope, is used with rate feedback from a rate gyroscope for
demping. This is the simplest system which will give stable £light. The
second is similar ‘o the first with the addition of a signal proportional to
the integral of heading angle error to eliminate steady state errors. Block
diagrams of the two types of system are shown in Figs. 1 and 2. Frequency
response techniques, which are generally employed in the analysis of linear
servomechanisms, are used in the basic design of the system. The transfer
functions of the rate gyroscope and the motor position control servo are
assumed, for this purpose, to be simple quadratic funotions. In the design
of the system, three possible motor servo bandwidths, corresponding to
natural frequencies of 3, 5 and 10 cyoles per second, ere examined to show
the effect of this parameter on the permissible values of loop gain for a
well damped transient response. These bandwidths are thought reasonsble in
the light of existing hydraulioc servo development. Some relevant design work
is described in Ref.2.

In seotion 3 the lateral motions arising from an error in missile atti~
tude at the instant of launch and from a constant rocket motor deflection
bias are calculated for the two types of system. These caloulations based
on certain simplifying assumptions, indicate that the system including
integral of error is more effective in reducing deviations from the desired
course and is therefore to be preferred. The stability of this system with
missile aerodynamios included is analysed in sectian L.

2 Control System Analysis Negleoting Aerodynamic Forces

2.1 Response of the missile to rocket motor deflection

Referring to Fig.3, it oan be seen that the equation of missile angulax
moti:n in the yaw plane when aerodynamic forces are negligible, may be
written ‘ .

0? a - Te¢H (1)

-5 -
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where the dot notation indicates differentiation with respect to time

end ¢ = the missile heading angle with respect to a fixed direotion
: (assumed vertical),

8§ = the ropoket motor defleotion measu.red from the’ m:.ssile axis
: (assumed small so.that sin § # §),

T = the rocket motor thrust,

the missile lateral moment of :mert:.a about an axis through the
centre of gravity,

Q
K

¢ = the distence between the missile centre of gravity and the
rocket motor pivot point.

Re-writing equation (1) in the form of a tramsfer function we have

% - -2 - -xg, ()

where Kl,. = %9 = ihe invariant factor of the transfer Punotion, .
and Gl'_ = % = the frequency variant part of the transfer function.

v and § denote the Laplace transforms of ¥ and & respeotively.

2.2 Transfer functions of the servo and rate gyroscope

It is assumed that the ologed-loop transfer function of the rocket motor
position control servamechanism can be represented by a quadratic function of
the form

5 K3u32 :
'-é-f' = - K3G'3 BT ] (5)
3 p. + 2?;3:,)31) + g

where e the input signal to the servo,

W
]

= the invariant factor of the transfer funcfion,
= the frequency variant part of the transfer function,
= 2x x the undamped natural frequency f£.,

WP

= +the damping factor.

To show the effect of different servo bandwidths on the permissible
values of heading control stiffness, three values of the undamped natural
frequency £z, namely 3, 5 and 10 cycles per second have been used in the
analysis. T o dampmg factor %3 is assumed equal to O.6 throughout.

For the rate gyrosoope a quadratio transfer is also assumed, namely
2

)
" K2G2 = 7 Kz 2 7 (ll-)
P + Zzzwzp + Wy

-ta] IN@'
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T L

where e, = the output signal from the rate gyroscope,

K, and G, = the invariant and frequency variant parts of the
transfer function respectively,

w, = 2mx the undamped natural frequency 209
The values used for f» and are respectively 29 cyoles per second

and O.5. These are related to an existing rate gyroscope which has a range
of +500 per second. )

the damping factor.

Fig.!4 shows the frequency response ourves corresponding to the transfer
functions assumed for the servo and rats gyro. The values of the gain
parameters K, and Kj are assumed to be at our disposal.

2+3 Prequency response study of control system without integral of error

It can be seen from the block diagram of Fig.1 tha‘b the inner loop
feedback transfer function is given by .

P = v
82 _ 82 _‘k -3—
76; = b 3 g} = chrz'f K5G3 . K4G4 . (5)

The frequency variant paxrt (GszGl,_) of the transfer function of expression’
(5) is plotted in Fig.5. Three séts of curves are shown corresponding o
the three assumed servo frequencies of 3, 5 and 10 oycles per secand. It
can be seen by plotting gain/phase curves on a Nicholls chart that the
closed loop response of the rate feedback loop will be adequately damped if
a phase margin of 60° is maintained in each case. For. this condition the

. following loop gains and siability margins are obtained.

Table I

Rate Feedback Loop Gains

Servo bandwidth
f3 cyocles per second 3 J 10

Loop gain in db (20 log10L1) 47,0 21,0 26.0

Loop gain factor Iy = KKK 7.08 1142 . 20,0

Loop gain margin 9.4 db at | 8,6 db at | 8.3 db at
2.82 0/8 | Le52 o/3 | 8.25 o/s

Loop phase margin 60° at 60° at 60° at
1ot ofs | 1.81 o/s | 3.26 ofs

With the rate feedback loop closed we have

e

3

= €, - 6

1

o -

and the closed loop transfer functlon may be expressed as

~1
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Z %%%%ﬁﬁ:J kn
KGy L1+ KpGpKGsly

._‘(DI !-é-ol‘

where ey = the output signal from the heading angle gyroscope. The feedback

transfer function for the position feedback loop is given by

| (8)
s . pK2G2 + KZGZKBGBKI;-GA

i 3 K, K2G2K5G5K4Gll.

v 1
where ¥, denotes the heading angle error from the gyro datum and Ky is the
gein factor for heading angle exrror signal.

Gain and phase plots representing the frequency variant part of the above
transfer funotion, incorporating the appropriate rate loop gains given in
Teble I for the three cases, are shown in Fig.6. Inspection of these on a
Nichol's chart shows that a well damped closed loop response will be obtained
with a phase margin of 60°s The following loop gains and stability margins
are obtained for this oondition.

Teble IT

Position Feedback Loop Gains

‘Servo bandwidth :
f3 cyoles per second 3 5 10
Loop gain in & (20 log,cLy) 1140 148 19.6
5

Loop gain factor L, = -K; 3455 5.50 9.55

Loop gain margin 8e7 b 2t |91 db at |8.9 db at
1,60 ¢/8 | 2.48 ¢/8 | 430 c/s

Loop phase margin 60° at 60° at 60° at
0.58 c/s 0488 o/s 1,50 o/s

Fige7 shows the variation with frequenay of the gain of the closed loop
transfer function % for the three cases. ¥ denotes the gyro datum angle
measured with respeoct to the same fixed direction as .

2,4 Frequency response study of control system with integral of error

As the rate feedback loop transfer funotion is identicel with thet already
studied in section 2,3, the loop gains set out in Teble I also apply to the
control system illustwated by Fig.2., In this oase, however, the position
feedback loop inciudes an additional term proportional to integral of heading
angle error and hence the feedbaok transfer funotion of this loop becames

SECRET
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X .
RS S

. . PG, 2723

where K5 denotes the gain factor of the integrator.

is shown

K G X.GK G

The frequency response of the term g_ E +2 2(}51{11;1‘4 AG'

e, U+ 225050,

in Fig.8. The parameters of the remaining part of the transfer function of
K

expression (9 :E <I+ p~K—;-> are at our disposal to be chosen in such a way

that the response of the outer loop is satisfactory. Since there are two
peremeters at our disposal, namely Ky and , the transfer funotion of
expression (9) may be made to satisfy two conditions. To facilitate com-
parison between the fypes of system shown in Figs. 1 and 2, the oriterion of
60° phase margin in the outer loop, used in section 2,3, is retained as the
first. of these oconditions. The second condition selected is that s the
integrator gain factor, shall be as large as possible, compatible with the
first condition being fulfilled, to reduce errors due to low frequency dis-
turbances to a minimum. '

The mothod used to determine the values of K5 and Ky to satisfy
these conditions is as follows. Consider first the frequency response of
X

the term (1 +D f;-) illustrated in Fig.9. This has a break frequency, as
K
yet undetermined at W, = T{i o Above this frequenocy the gain asymptote
1

rises at 6 db per octave and the phase lead increases from 45° to 90°, ILet
Dy and ¢4 denote respeotively the gain (in db) and phase of the term

(1 + D 1—%-) at the outer loop cut-off frequency W, dee. the frequency at

which the feedback gain is unify (zero db). Then to fulfil the 60° phase
margin oondition the following eguations must be satisfied:~

20 log1o%+ Dy+D, = 0 (&) | (40)

g+ 9y = =120 (degrees) (1)

where Dp and ¢, denote respectively the gain in db and the phase of

2
PG,

v [

at the out-off frequency u .
+ K2G2K3G3KhGh] (]

The out-off frequency u, corresponding to any particular value of
is easily determined by means of equation (11) and the phase curve of Fig.8.
The gain Dy corresponding to any value of «, oan be read from the gain
curve of Fig.8. For example, for ¢4 = 80°, go = ~200° from equation (11)
and from Fig.8 it can be seen that wy = 372 radians per second and Do =
~22.7 db for a servo natural frequengy of 5 cyoles per second. The nine

Ll 9 -,
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values of w, and the corresponding values of Do for the three seryo band-
widths and for ¢y = 75°, 80° and 85° are glven in Table IIL,  From Fig.9 it
cen be seen that the values of D4 ocorresponding to ¢4 = 75°, 80° and 85°
are 11.8 db at a frequenay of 3.7 ug, 1543 db at 5.8 wy and 21.2 db at

1106 w,. Since these are the cut-off frequencies we have:-

¥
X o W W
) .c c_ . c o o o .
K,‘ = 0, = 3E, 5.8 or =z for ¢1 = 75, 80" or 85  respectively. “
(12)
The nine yalues of the ratio % given in Table III are derived from
equation (12) by using the appropriate value of «, and the corresponding
values of % are obtained from equation (10). Hence the values of Kq and
corresponding to the three values of ¢1 are determined since X, is
ixed by the rate feedback loop gain given in Table I.
Table ITI
Values of K1 and K5 corresponding to the three values of ¢y
L
Phase ¢1 dogrees +75 +80 85
Gain Dy db ' 1.8 +15.3 1.2 ;
Ratio % 3,75 \ 580 11,8
Wo
Phaso g, dogreos ~195 . ~200 ' ~205
Servo bandw{dth .
ty cls 3 5 10 3 5 10 3 5 10
Cut=off frequency
W, rad/sec 1,80 2.85 4.85 2433 3.72 8e35 290 4,65 8.00
K
W, <- -é)r&d/sec 0.480| 0,780 1.29 0,402 | 0,642 | 1410 || 0.250( 0s402 04690
Gain D, db 10,2 | =18,2 | 7.3 ||~147 |e22:7 (32,2 |[=18.5 [~26.5 | «38.2
K ¢
20 m;,o—é Aot | e6d [M55 || 08 | 7ok [HE9 || 2T | 453 | 4150
Ratio l-;-’5- 0e832| 2,09 | 5498 06933 | 2.24 | 7400 | 0.733| 1484 | 562
2
Ratio 1& 175 | 275 | 42 || 232 | 364 | 37 || 294 | 458 | 8.4

K
All the values of E and .t given in Table III satisfy the first

(60° phase margin) condition. Comparison of the values of %— , given in
Table II, for the system without integral of error with the ocorresponding
values in Table III shows that the latter are lower. For predetermined values

- 10 -
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of Kp, Ky inareases with ¢y tending to the values given in Table IT as
¢4 tends to 90° and tends to zero. It can be seen from Table III,

. however, that for all three servo bandwidths Ks is larger for ¢4 = 80°

than for ¢4 = 75° or 85° Thus K; has a maximum value in the region of
¢4 = 80°. The values of Ky and given in the three central columns
therefore satisfy approximately both The chosen conditions and will be used
in all subsequent calculations on the integral of error system.

The prooess of determining the values of and K4 which satisfy
the conditions selected can be carried out quic and conveniently by
using templates cut to the shape of the gain and phase curves of Fig.9.

The frequency response curves for the outer loop feedback transfer
function for the three servos and for ¢4 = 80° are shown in Fig,10. It
can be seen from this that the gain ma.rg:.n is 12,4 db at 1.56, 2,42 and
4e15 cycles per second, ‘the phase margin being 60° at 0.37, 0.59 and 1,01
cycles per second, for £z = 3, 5 and 10 cycles per second respectlvely
Pige11 shows & comparison”of the frequency responses for ¢¢ = 80° and .
¢4 = 85° for F; = 10 cycles per second. It is evident that ¢y = 80°
gives a higher gain at low frequencies, due to the higher integrator gain
factor, at the expense of a rather lower gain at high frequencies. The
variation with frequency of the gain of the closed loop transfer funotion

g— for the three servo bandwidths is shown in'Fig.12. Polar plots for
i'3 = 10 cycles per second for the two types of system shown in Figs. 1 and 2
are compared in Fig.13.

2.5 Numerical values of gain factors for the proposed control systems

The values given in this section sre based on the frequency response

studies of seotions 2.3 and 2.4 and on the following date for the RTV{ missile,

Table IV

Assumed Missile Parameters

" Condition |m slugs

Centre of| Rocket ) - %
Moment of | &ravity | motor |Assumed K=3
Pael Moss Tnertis |Position ‘| pivot aft{ Motor [radians 3

aft of of centre| Thrust|,er seo?!per secd
C‘slug £t2 nose of gravity| T 1b gerrad II))eerdez

£t L £t

Tanks full | 17.6 352 8.9l 7.79 1000 | 22.1 0.386
Half full | 15.6 26 8.85 7.88 1000 | 22.8 0. 397
Tanks - emply| 43¢5 328 855 | 8419 1000 | 25,0 0.436

In calculating the values of K, K, and given in the following
tebles, Kz is assumed equal to unity (one degree” of motor deflection pex
volt)., The actual value assumed is unimportant since, for given values of

and the feedback loop ga:.ns, the products Ky K Kr K3 and K5 Kz will
be constant. By choosing as unity, the value, for :.nstanoe, in
volts per degree is numeri the same as that of the rroduct K., K_3 in
degrees of motor deflection per degree of heading angle error.

The parameters for the control system of Fig.q are based on the loop
gains given in Tables I and II.
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Parameters for the Control System of Fig.1

:ﬁ‘3 = 3 cyoles f3 = 5 cycles f3 = 10 cyoles ® ?
Fuel - K3 Kl;. per seo per seoc per sec !
Condition | deg/volt | sec—2 K X, K; K -
V/deg/sec | V/deg || V/deg/sec |V/deg | V/deg/sec | V/deg ¢ |
- 1

Full 1.0 22.1 0.318 1413 04507 2.79 0. 905 8. 6l

Hall full 1.0 22.8 0. 3141 1.10 0.493 2.72 0. 880 8e40

Empty 100 25-0 Oo 281-[- 1-01 o-ul-9 2;1{-7 0.800 706’-[- .
The perameters for the control system of Fig.2 are based on the gain ratios x
K ‘ '
-KS and -fz- given in the central colums of Table III. The values of K,, K3 ;;
and K, are the same as those given in Teble V above. 2
Table VI i
Parameters for the Control System of Fig.2
: &

f; = 3 cyoles f5 = 5 cyoles f5 = 10 cycles !
Puel per sec per sec per sec - 3
Condition || - . I
V/sec/deg | V/deg | V/sec/deg | V/deg | V/sec/deg| V/deg 8|
Empty 0.265 0. 658 1405 1. 6l 5.60 5.10

It can be seen from the above tebles that, if the feedback gain factors are

kept constant throughout f£light, the loop gains will increase as the flight
proceeds by approximately 1%, i.e. sbout 1 db, due to reduction in the moment

of inertia etec.

gain and phase margins available.
therefore, it is assumed that the feedback gain factors Ky, K, Kz and K5 will
be kept constent at the values given in Tables V and VI for tanks gull

conditions.

.3 Effect of Control System Parameters on Test Vehicle Behaviour

This is unlikely to have serious effects in view of the large
In the following secticns of this note,

The optimum control system may be defined as that which allows the missile

I3

to deviate, under the influence of external disturbing forces and imperfections
in the missile, by the leest amount from the desired trajectory. OCaloulation of
trajectories resulting from a variety of input demands, initial conditions,
disturbing forces, winds, etc, is a formidable task which may be more con~
veniently performed by means of electronic camputors. In this work, therefore,
no attempt has been made to determine the optimum control system as defined
above, but, in order to illustrate the effect of the control system parameters
on the trajectory, the missile motion resulting from two Yypes of imperfection
has been calculated. '

These illustrative ocalculations are based on the system parameters given in i
Tables IV, V and VI of section 2.5 and on the followlng simplifying assumptions:-

-42 -
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(1) that the demanded heading angle 1Y remains vertical throughout
£light;

(ii) that the angles ¢, and & are small. The rocket motor defleo-
tion & is assumed to be Limited to #5%

(i1i) that the missile mass, centre of gravity, moment of inertia and
’ L
feedback gain factors remain constant at the value ocorresponding -
to tanks full conditions; ‘
(iv) that aerodynamic forces can be neglected;

(v) that the rate gyroscope and rocket motor servo lags can be
neglected. ,

The deviation of the missile from the ideal vertical trajectory hes
been calculated for the following two ceses:-

(2) the missile has an initial heading angle error of 3° with
respect %o the vertical datum;

(b) a constant rocket motor deflection bias of 1° is present in the
control system.

The 'detaild of these caloulations ere set out in Appendix I and the
results are summerised in seotions 3.2 and 3.3. .

3«1 Basic equations

The assumptions stated sbove ensble the missile motion to be expressed
in terms of low-order linear differential equations with constant coeffi-
cients, the solution of which is readily obtainable by the Laplace ﬁWom—
tion methods From equation (1), the angular motion neglecting aerodynamio
foroces, is given by

Vo= -Fs - -x s (43)

where K, is oconstent and equal to 22,13 by essumption (i41).

By assumption (v), the control equation for the system without integrel
of error (Fig.1) can be written

8 = -Ky (o -0,y = -K1K3¢8+K2K3§y . (14)
Now
v, = (h-¥ = - ¥ | (15)

since by asswmption (i) ¥ = U, both § and Jp Dbeing measured with
respect to a vertical datum. Hence (1h4) becomes

8 = KKg¥+ xzxj'y . (16)

Similarly the control equation for the system with integral of error
reduoes 1o

13 -
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5 = KX, /uy at + Ky + KXoy (17)
The horizontal oomponent of missile acceleration is given by

£ = %sin (¥+8) # %(IIN- 5) (18)

by assumption (ii), and the vertical component by

yagws(wswg#(@-){ (19)

m

‘The coordinates (x,y) denote the position in space of the missile centre of
gravity w:{.th respect to its position at the instant of lawnch; g is the
acceleration due to gravity and m the mass of the rocket.

3.2 Missile deviation due to a 3° initial heading angle error

(2) Control system of Fig,1 (without integral of error)

The results of the trajectocy caloulations for this oase, shown graphically
in Fige14, are given in Tables VIII and IX of the Appendix. It can be seen from
the latter that, although the initial heading error decreases exponentially to
zero, the transient angular motion results in a steady state arossing wvelocity
%. The heading angle error is reduced to 2% of its initial value in 1.20, 04777
and 0.526 sec for the loop gains chosen for f£3 = 3, 5 and 10 ¢/s respeotively
and the corresponding steady state orossing velocities are 0,834, 0573 and
0.486 ft/sec. If the motor defleotion limit is not rzached, the crossing velo-
city is proportional to the initial heading angle error.

(b) Control system of Fig.2 (with integral of error)

The results for this case are illustrated in Fige15 and given in numerical
form in Tables X and XI of the Appendix. Again the heading error decreases
exponentially to zero but the response of this system is slower. For instance,
the heading angle error is reduced to 2% of its initdal value in 5.55, 3.48 and
1.75 sec for f3 = 3, 5 and 10 c/s respectively, On the other hand, unless the
motor deflection limit is reached during the initial transient, no steady state
orossing velocity x occurs with this system. A small position error arises
instead. The crossing rates of 0,047 and 0.46 ft/sec, which ocour with the gain
parameters corresponding to f£3 = 5 and 10 o/s respeotively, are due to the
effects of limiting the motor deflection.

3.3 Missile deviation due to a 1° motor deflection bias

(a) Control system of Fig.,1 (without integral of error)

The trajectories caloulated for this case are illustrated in Fige.416 and
given in funotional form in Table XII in the Appendix. It can be seen that
with this system a 1% bias causes steady state heading errors of 0,88°, 0,36°
and 0,116° for the gain parameters corresponding to f£3 = 3, 5 and 10 o/s
respectively. There is, in consequence, a steady transverse acceleration 3
of 0,87, 0.353 and 0s115 £t/sec?. The magnitude of this acoeleration is
directly proportional to the bias angle.

(b) Contwol system of Fige2 (with integral of error)

The trajectories for this oase are shown in Fige17 amd given in Table XIII
in the Appendix. It can be seen from the form of expression (I.31) that no

-1 -
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steady state heading angle error results from a constant bias in this type
of control system. Consequently there is no steady state transverse accel-
eration X bub, as can be seen from Table XIIT the transient angular motion
results in a steady crossing velocity % of 3.30, 0,83 and 0,157 £t/sec for
the gain parameters corresponding to f£3 = 3, 5 and 10 c/s respectively.
This crossing rate is directly proportional to the blas, provided that limi-
ting does not oocur.

Jedp Discussiqn of results

It has been shown that without an integral of heading angle error term
in the control equation a steady state component of velooity normal to” the
desired trajectory arises from an error in launching attitude, whereas with
integral of error control a position error arises but no steady crossing
velocity, provided that motor deflection limiting does not occur. Similarly
a bias in the control system omises a steady state transverse acceleration
without integral control whereas with integral control a transverse velocity
arises but no steady lateral aoceleration. Thus it appears that the system
with integral of error control, in spite of its slower transient response
characteristics, tends to give smaller deviations from the desired trajectory
due to disturbances. The advantage of the integral control system beocamées
more marked as the time of controlled flight increases since the ratio of the
lateral displacements arising from a given disturbance increases with time.

The effect of the higher loop gains, which are permissible with increased

servo bandwidth, can be seen from Figs. 14, 15, 16 and 17, In all cases,
where limiting does not seriously affect the result, the displacement from
the desired trajectory due to a given disturbance becomes less as the band-
width and gain increase, Fige15 shows an example (f3 = 10 o/s) of how this
general tendency can be cffset by the adverse effects of motor defleotion
Limiting. I% appears desirsble, therefore, to avoid using such high values
of loop gain that the probable range of disturbances will cause exoessive

4 Control System Analysis Including Aerodynamic Forces

The following analysis is intended to illustrate the effects of aero-
dynamic forces and noments on the stability of the integral of error control
system., Since the vehicle is symmetrical and roll stabilised, the amalysis
may be simplified, as in section 2, by considering motion in one plane only.
Aerodynamic and jet control foroes are expressed with reference to missile
axes, gravitational foroes and effects arising from varying flight path velo-
oity being neglected. Theoretical estimates, by Chapman, of the normal force
coefficient end centre of pressure position for the wingless RTV{ configura-
tion at subsonic speeds show non-lineer veriations with inocidence of the
normal force and yawing moment. For the purpose of the following dynemio
stability analysis, we have considered the effects of small perturbations
about fixed values of incidence and have assumed linear relations over this
limited range. The missile is aerodynamicelly unsteble for small angles of
incidence.

4+4 Response of the missile to rocket motor defleotion

The basic squations of motion in the yaw plane axre
m(¥+Ur) = ¥
] (20)
ct = N

where v and r denote the sideslip velocity and rate of turn respectively,

m the mass and U the flight path velocity. Y and N denote xespectively. .

the normal force and moment acting in the yew plane. Taking total differen-

tials of equations (20) gives
. ~415 -
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4

m(arsvar) = LaveLar, Las 1

&

a 38
(21)

a

b Mgy Wy W |
cat = avdv+ardr+aéd'5'

Writing -g%‘ = T, —?—g = Ty eto, negleoting Y and N_ end denoting
pertirbations by dashes, i.e. dr = r!, dv = v' eto, equations (21) beccme

) A m(¥' +Uc') = T vt o+ 6! }

- (22)
Ckt = va' + NSG'.
Trensforming equations (22) and eliminating V' gives the transfer
j function '
f =1 3! n.p + -y.n | :
f E.L . W ~ I (23)
: 5 .6 PR+ Unv .
Y. N ' N .
where y = -E-v s B, = -a! s ¥ = -E?--, n = -6-6- end r = V.

The estimated values of the coefficients of exrression (23) are given in
Table VII for U = 300 ft/sec and incidences of 0° snd 10°. Missile conditio
assumed, corresponding to tanks half full, are m = 15.6 slugs, © = 346 slug
and centre of gravity 8,85 £t aft of the nose (Table IV), since the speed half
way through powered flight will be in the region of 300 f£t/sec.

Table VLI
Aerodymamic Derivatives for Wingless RTV4 at 300 £t/sec

Incidence B yr nv y5 n8
o° ~0,0185 | ~0s0138 | 64e2 | ~2248
10° | =0.143 “0,0117 | 6le2 | =22.8

. Substitution of these values in (23) gives for f = (°

. (22804 1.307) | _=0uH7 (4 + 17.45p) (24)
P° + 0.0185p = hoth  (Ouh94p = 1)(0-489 + 1)

o»_l_l-q-:_l

ard for B = 10°

-, |
%7 . n(22.8p+ 3.33) = 0.95 (1 + 6.8p) (25)

2° 4 0.113p - 3.54 (0.55Cp - 1)(0.518p + 1) )

- 16 -
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Denoting the transfer function » by <KG_ we have K, = 0.317
for zero incidence and 0,95 for 10° incidenoce. Equations (24) and (25) give
the factors of the function G, for the two cases and Fig.18 shows the
corrésponding frequency response ocurves.

o1l

k.2  PFrequency response study of control system with integral of error

Considering first the rate feedback loop, it cen be seen fram Fig.2
that the open loop transfer function is given by ‘

-1 [l ] ':'
®) 2 ¥ 3
E; = ? ; . % = KZG-ZK_),G3 Gy (26) -

The dashes indicate perturbations about steady values. Fig.19 shows the
frequency response curves for KQG%I%GB for a servo bandwidth of 5 o/s and
the corresponding value of KoK =703507) given for tanks full conditions
in Teble V of seotion 2. Only the 5 ¢/s case is examined in detail here to
avoid complicating the dia . Pig.,20 gives the frequency response ocurves
corresponding to equation (26) for mean incidence values of 0° and 10° and
Fig.21 shows the corresponding inner loop Nyquist diagrems.

It can be seen from Fig.20 that the phase margin is 61° at 1.86 ¢/s
for both values of inoidence and the gain margin 8.6 db at 4.56 c/s.
Camparison with the corresponding figures for no aerodynemics given in
Table I shows that the aerodynamic forces and. moments have a negligible
effeot on the stability of the rate feedback loop. The transfer function
K2G2K3G3K,+Gh has a single pole in the rigkt hand half of the p—plane
arising”from the unstable aerodynamic transfer function. Sinoce the Nyquist
diagram does not encirole the point (-1 + jO) the divergent instebility is
unaltered by the rate feedback loop and consequently the closed loop transfer
function has a single pole in the right hand half of the p—~plane.

The feedback transfer i‘unbtion of the outer loop is given by

e.2loB e o

1+ K2G2K3G3KL'_G-

-t

¥

e

Fig.22 shows the frequency response curves of the function in square
brackets, obtained from Fig.20 with the aid of a Nichols chart, and Fig.23
gives the curyes corresponding to equation (27) for Ky = 1.84 and Ks = 1.19
(see Table VI). It can be seen from the latter figure that the phase hargin
is 57° at zero incidence and 59° at 10° incidence at 0.56 cycles per second,
compared with 60° at 0.59 o/s in the absence of aerodynamic forces. The
gein margin is 13.7 db at 2.66 c/s compared with 12.4 db at 2.42 c¢/s in the
absence of aerodynamic forces.

The outer loop Nyquist diagrem is shown in Fig.24. It is evident from
the complete diagram (inset) that the contour makes one anti-clockwise and
two clockwise (negative) encirclements of the point (-1 + jO) giving a net
total of one negative encirclement (N = ~1). Sinoe the open loop transfer
function has a single pole in the right heand half of the p~plane (P = 1) we
have

Z a PaN
28

o @
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where 7 denotes the nuiber of zeros of the denominator of the closed loop

transfer funoction. Hence the system is stable with the proposed values of loop
gains.

It should be noted that if the outer loop gain were reduced by factors of
9.4 (19.5 db), &t zero incidence, and 12.1 (21.7 db), at 10% incidence, the
system would become unstable sinoe there would then be one positive encircle-
ment of the oritical point axd consequently Z would be equal to 2. Thus the
system is conditionally stable in the presence of aerodynamic foroes but, for
the two cases considered, the gain margins in both directions are large.

4.3 Response to a step function change of demanded heading angle

It is of interest to compare the response, with and without aerodynamic
forces, of the proposed system to a step oha.nge of heading angle demand. The
calculations are smpl:.f'led by neglecting, in both cases, the servo and rate
gyroscope lags. v

In the absenoe of aerodynemioc forces the response of the integral of errar
system to a step function of magnitude {p is given by

’{F' . (L1L2p2+ L1L6) ¥ ‘ . (29)
n (p3+ L+ LLyp +'L1L6) T

K
where I = KJK, Ip =-Kl and L6..—K§

It is assumed that all initial conditions are zero and that no.limiting
occurs. Similarly in the presence of aerodynamic forces

_ (4L, + LLe)(ngp + 0y = yens) h;
P [thz(Pz - YR+ Un,) + (nsp + 0¥y - yvns)(I“p2 + LL,p + L1L6)]

(30)

where the dashes indicate that for non-linear aerocdynamics the expression is
only valid for small .

With the gain paremeters proposed far f£3 = 3, 5 and 10 /s, given in
Tables V and VI expression (29 grgives

~0.508% g-3e29t

¥ = Y [1+0.338e - 311 8in(1.507t + 25,5°)] for 23 = 3 c/s

¥ = gy [1 4 0,367 B158 | 5,516 25% qin(2,23 + 23.99)] far 25 = 50/

¥ = ok [+ 0320710 3TY L 5,28679429% gin(3.95¢ 4+ 23.8°)] for 25 = 10 ofs.

These expressions are plotted in Fig.25.
For the gain faotors corresponding to 13 = 5 of/s and for the aerodynamic

parameters carresponding to zero and 10° incidence at U = 300 f£i/sec,
expression (30) gives
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¥ o= ) [ + 0.02286™0 7% | 0,0903670983% _ ) paeS3t . 5,45¢7610%)

at zero incidence and .

¥ o= g [+ 0.06936™0 WY L 0,00500700IT5Y |9, 36675+29% gin(0.592 4 6.4°]

at 10° incidence., These two expressions are illustrated in Fig.26.

It cen be seen from Fig.25 that in the absence of aerodynamic foroes
the overshoot is approximately the same (sbout 15%) for the three servo
bandwidths considered. This igs in accordance with expectation since the loop
gains were chosen o give a 60° phase margin in each cases The higher speeds
of response obtainable with the larger loop gains is also evident.
Comparison of Fig,26 with the corresponding curve (fy = 5 o/s) of Fig.25
indicates that the aerodynamic foroes have the effec% of reducing the over-—
shoot and the speed of response. Far instance, the time at which the heading
angle passes the demanded value is increased from sbout Oep sec to about
0.9 sec and the peak overshoot is diminished from 15% to ebout F. The over-
shoot however decays more slowly the longest {time constant being 1.2 sec in
the absenoce of aerodynamics compared with 7 seo for B = 10° and 17.5 sec
for zero incidence.

5 Conclugions

This preliminary design study has been made to determine suitable para-
meter values for two types of heading control system for RTVY]. Linear servo~-
mechanism theory has been used throughout, the analysis being based on the
assumption that the short period response of the system and its components
cen be represented approximately by linear transfer functions. The maximum
values of the gein parameters, consistent with a well damped transient
response, are itabulated in section 2 for the two types of system and for
three possible rocket motor servo bexdwidths. Adequate damping is ensured
by choosing the values of loop gain to give a phase margin of 60° in botd rate
and position feedback loops.

Comparison of the responases of the two types of system to disturbances
leads to the oconclusion that the system including integral of error control
is to be preferred. For example, it is shown that with the latter system a
rooket motor bias results in a steady state oomponent of wvelocity normal to
the desired trajeotory, assumed straight, whereas without integral of exror
a steady state normal acceleration component coours.

A limited examination of the effects of aerodynsmic foroes and moments
indicates that for the conditions assumed these will have little effeoct on
the response of the proposed system. With an aerodynamically unstable con-
figuration the system becomes conditionally stable, but it is shown that for
the integral of error system, with the gain parameters proposed for a 5 c/s
servo bandwidth, the gain margins in both directions are large. With the
large stability margins proposed it appears to be uwmnecessary to make provi-
sion for varying the gain parameters in flight on acoount of aerodynamic
forces or variations in the vehicle weight, moment of inertia etc. The com-
bined effect of the latter is to alter ths loop gains by about 1 db between
tanks full and tanks empty conditions.

——————

~19 -
SECRET

e




SECRET

Technical Note No. GW 397

List of Symbols

Bar denotes Laplace Transform (e.g. )

Dot denotes differentiation with respect to time (e.g» ¥)

Dash denotes perturbation quantity (e.g. wv!)

C slyg 42

D, db

1
db

4 volts
2 volts

e 3 volts
5 cyoles/sec

£y cycles/sec

g ft/ se0°

G -

e (2]
+
i

volts/degree
x}olts/degree/ sec
degrees/volt
sec™

volts/sec/degree

R AN ARV S A o

£t

=
I

L2 sec™l

L6 860

Missile lateral moment of inertia

X
Gain of <1 + P —1-> at frequency W,

%

G,K,G. K G
. T B ) ' ~
Gain of > 1+K‘2GKGKG at frequency Wy

PG, 2373

Output from heading gyro pick-off
Output from rate gyre pick-off

Net input to roocket motor servo

 Undamped natural frequency of rate gyro

Undamped natural freguency of rocket motor serve
(servo bandwidth)

Acceleration dus to gravity
Frequency variant paxrt of rate gyro transfer function

Frequency variant part of rocket motor servo transfer
function

Frequency variant part of missile transfer function -

=y

Heading gyro pick~off gain factor

Rate gyro pick-off gain factor (iﬁvariant with frequency)
Rocket motor servo gain factor (imveriant with frequency)
Frequency invariant factor of missile transfer function
Integrator gain factor

Distance between missile centre of gravity and rocket
motor pivot point

Rate feedback loop gain (= K2K3K1’_)

K
Pogition feedback loop gain (.-: —Ki)

Integral of exrxrar loop gain <= %)

- 20 -
SECRET




m slugs
N 1b £t

N_ Ib £t/ft/sec
N, b ft/rad./seé

Ny b ft/rad

n, rad/ seoz/ft/ sec
8802
i

N [in eqn. (28)

only]
P -

r degrees/sec or
rad/sec

sec

o cf

-

sec

1b

(=T

£t/sec
v ft/sec
x £t
£t
1b

Ty and ¥y -

Z -

p degrees or
radians

5 degrees or
radians

5, degrees
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mass of missile

Total moment in yaw plane

Aerodynamic derivative —g%
: . . aN
Aerodynamic derivative =
Motor control derivative -%%

al@ aol&

Number of encirclements of the point (-1 + jO)

Laplace Transform varieble

Number of poles of feedback transfer function in
right hand half of the p-plane '

Rate of turn of missile (= §)

Time '

Time at which rocket motor moves from limit
Rooket motor thrust

Missile £light peth velocity

Missile side-slip velocity

Displacement in a horizantal direction
Displacement in a vertical direction

Total normal force in yaw plane

Aerodynamic and control derivatives -g—xv- ’ %f: and -g%
respeotively .

Y—v and -I—s respectively

m m

Number of zeros of denominator of closed loop transrer
function

Missile angle of incidenoce

Rocket motor deflection with respeot to missile
longitudinal axis

Rocket motor deflectian bias
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A degrees

#y degrees

¢2 degrees

¥ degrees

‘I’D degrees

§_ degrees

) rad/sec

w. rad/sec

' rad/sec

us rad/sec

Ne. Author

1 A.P. MacLaren

2 G.T. Eynon
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Limit of rocket motor defleotion
Rate gyro damping factor
Servo damping factor

Phase of the berm (1 + P -KKJ-> at frequenby Wg
D

: K. G K.G.K G '
Phase of the term 51 223 3&5' ] at
P. G—2 1+ K2G2K5G3KZ'_G4

frequency Wy
Heading angle of missile with respect to vertical datum

Demanded heading angle (gyro datum) with respect to
vertical datum

Heading angle ervor with respect to gyro datum (= ¥ - ¥)
%
Break frequency of the term <1 + D E-> (see Fig.9)
5

A:xgular frequency at which feedback gain is unity
(cut-off frequency) .

2% f2

£
27;3
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AFFENDIX I

Detg.ils of Trajectory Calculations

The following calculations of approximate trajectories are based on the
assumptions set out in seotion 3 and the equations given in section 3.1.
The gain parameters are given in Tables IV, V and VI.

1. Deviation due to a 3° Initial Heading Angle Error

(a) Control system of Fig.1 (without integral of error)

The control equation for this case, from equation (16), is
8 = KKy + KoKz ¥ « (T.1)

The assumed initial conditions are Y, = 3° and ¥ = 0 giving 8o =
31(11{3 degrees. It can be seen from Table % that for f3 = 3, 5 and 10 cycles
per Second, 3K Ky = 3639°, 8¢37° and 25.92° respectively. Thus the initial
value of demanded motor deflection, for fz = 5 and 10 c/s, exceeds the
assumed 5° limit, and so the actual deflection will remain constant at the
Limit value for a short period at the beginming of flight. Referring to
equation (13), it is evident that the missile angular motion during this
period is given by .

V= -%a = - K (1.2)

where A denotes the limit value of motor deflection. Hence

v

i

- K, At ‘ (1.3)

and ¥ ¥, - %Kh_mz . (Tok)

i

The time 14 at which the demanded motor deflection falls to A may be
obtained by substituting expressions (I.3) and (I.4) in the control equation
(I.1) and solving for t. Hence

T R

vwhere, as before, L.1 = K?-K}Kla- and I.2 = —K—1- and only real and positive

5

values of t1 are admissible,

The trajectory during the period 0O to t1 is obtained from

2= Z(y+a) (1-6)
ad  F o= Z-g (.7)
- 23 -
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whence the displacement (x,,y,) at time t, is given by

x, = Tf?[:% (v, + A)%,° = —211; K)+At1l*':|

The corresponding valués of

(T.3) end (L.4).

and

y1 ‘::l %(TE"‘g>f12 .

(1.8)

(L.9)

are obtained from expressions

cases with the gain parameters specified in Teble V.

Conditions at time ‘b,]

Table VIIT

Table VIIT gives the conditions at time 1%y for the three

¥

Servo t x N % ¥ ¥ F
bardwidth| 1 1 1 1 1 N
Iy c/s | sec £t £t | ft/sec | ft/sec| degrees| deg/sec | degrees
3 0] o 0. 0 0 3.0 0 3.39
10 0129 | 0.0648 | 0.205 | 0.984 347 2,08 14, 30 5.0
After time the trajectory is obtained by solving equations (13), (16),

(18) and (19) with the initial conditions given in Table VIII.

of equation (13) gives

D= - .
PY = Kb+ y + 0y

Transfarmation

(1.10)

where, as before, the bar notation indicates Laplace Transforms. Similarly,
egquation (16) becomes

8 = KK¥ o+ KK(o¥ - ) e
Solution of equations (I.10) and (I.11) gives

(Pl )ty +

"and

From equation (18) we have

=

1:-2 + L1.p +

Ly

L1I42*1P + L1'i‘1 (P+I‘2) .

D

PX =

1, (B4l L)

2 (W) + %, + 1=,

and substitution of expressions (I.12) and (I.413) in (I.14) gives

-2l ~
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X, X
— g wm—— g
+p2 P

T (R ¥y Ly Loy eyl ) + KTy + (K#J,Lﬁz)}i;

x = 2 z .
mp" Ky (p7+L, DAL, Ty)
(1.15)
Finally, £rom equation (49), we obtain
= 1.5 \
y = G‘-‘— >""+"§+'—"’~0 (1016)
m p‘3 o ) -

The missile motion after t4, in texrms of ¥, 8, x and y as funotions
of time, is obtained from the inverse transformations of expressions (I.12),
(I+13), (T.15) and (1.16). These functions are given in Table IX and Fig.1h
shows the corresponding trajectories. In this table + denotes time after

tq.

Table IX

Motion after time 'b1

r3 1. ¥ degrees 8§ degrees
3cls | 4,230 3°5% oos(3, 576-0.782) 4,816 o5 (3.57440.778)
5cls U 3440”8 oog(5, 5100.476) 9.5589*85% cos (5.51841,919)
10 ofs || 2.186™9°9T5% Los(9,54t-0.304) 18,8690 9T5Y cos (9. 54841,305)
r3 ) x fegt Y feet
3c/s || 0.0182 ¢ 0.8346 = . 12,362

03545 (10,0182 cos 3.57% + 0.252 sin 3.57¢)
5c/s | 01077 + 9.573% - 0.0305 + 1430t + 12,38
e75+85% (50,0966 cos 5.51t + 0,127 sin 5.51t)
19 c/s || 04538 + 0.486% = 0,205 + 34176 + 12.3t2

Il €997 (0,089 cos 9.54t + 0.0407 &in 9.54t)

(b) GControl system of Fig.2 (with integral of error)

It can be seen from Table VI that in this ocase also a 3° initial heading
error demands an initial motor deflection greater than 5° for the gain para—
meters corresponding to f£3 = 5 and 10 cycles per second. IHence for these
two cases the anguler motion during the launching phase is again given by
equation (I.2), (I.3) and (I.4). In addition we have

”

j ¥atr = oyt - (1.17)

agssuming that the integrator output is held at zero until the instant of
launch (t = 0). . 25
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Substitution of expressions (I.3), (I.4) and (I.17) in (47), the control
equation for this case, gives the following equation for ¢4, the time at
which the demanded motor deflection falls to A:

3.3 .2 <_1_ “'o) <1 ¥ ) '
7+ 1%+ 6 - t+ 6 (= —=—) = O (1.18)
i, P L “KIgh) °
K K
where I, = KX, I, ':Kf amd I =1'<2’5' .

The required valué of %4 is given by the smallest real and positive root
of equation (I.18) and the displacement at this time is obtained from expres-
sions (I.8) and (I.9). Table X gives the condicions at +t4 for the three
cases.

Table X

Conditions at time t1

5] : '
bendwidth | 4 74 % Y4 ¥y 2 5
£3 ofs sec £t £t | £t/sec | £t/sec |degrees | deg/sec |degrees
3 0 0 0 0 0 3.0 0 2.21
5 0.0102 [0.0002 | 0.0013 | 0s035 | 0.251 2.99 1413 5.0
10 0.1057 10,019 | 0,137 | 0.354 | 2.60 2.38 | ~11.75 | 5.0

After time 14 the missile trajectory is obtained from the solution of
equations (13), (117), (18) and (19) with the initiel corditions given in
Table X. Differentiating and transforming equation (17) gives

P8 - & = KK+ KK(phw) + KE(5ypy) (1.19)
and solving (I.19) with (I.40) gives

¥ (P2‘+L.iP+L1L2) + ¥y(p+ly) - K, By

¥ = 3 5 (1.20)
P+ IHP + IHIQP + I%I%
s /D A\
, ) Lilg | pH + ¥ G’E + 1)_j+ p%(h_&’
and 5 = . (1.21)

z
Substitution of expressions (I.20) and (I.21) in (I.14) gives

_ L . LL L.~
T {h [pz + L1p <1+T(-E>+L-|L2]+ t‘ [p <1 +-—1K:2- + L1 (1 +-1x1—6)_]+ 61(p2—1(2f)

mp2 (p3+L 1 I»2+L1 I:zp+L1 I"6 )

+ (T.22)

b ool
SO

]

in given by exgression (I.16).
- 26 =
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The motion after time +t4, in terms of §, §, x and y as funotions
of time, is derived from the above equations. These functions are given in
Table XI, in whish t denotes time after 44, and Fig.15 shows the corres-
ponding trajectories.

Table XI

Motion after time t4

b ¢
c?s ¥ degrees 5 degreas

3 || 63255 (101 cos 1,507¢ + 8,42 sin 1,507¢) 3285 (5,01 cos 1,507t~ 5,02 sin 1,5078)

- 1,010 5088 + 0,012¢0+ 08¢

5 || 8525 (4,00 cos 2,23t 48,11 atn 2.2366) || 6525 (14,95 oos 2.2366 =13,2L sin 2,236)

- 1.006-0'813& + 0‘059'0.813
10 || 9% (2,95 cos 3.95= 3,8 sin 3,95t) e 992 (1,0 cos 3.95t= 27,8 sin 3,95t)
- 0.579"1 370 + 0.d0g" 1370
t x foet feot
ofs ¥ tes
3 || 303 « 3.62604508¢ 12,32

+ & damped oscillatory tem

5 1636 « 00l7t =~ 1,130 «B130 0,0013 + 0,251% + 12,3t2
+ & duiped oscillatory tam

10 ]| 0,43 = 0,46 = 0,250 +37¢ 0,137 + 2,60t + 12,382
+ & dumped osolllatory tem

The damped oscillatory transient term of x is not given in detail in
the above teble as it beoomes negligible after one second.

2, Deviation due %o a 1° Motor Defleotion Bias

(2) Control system of Fig,q1 (without integral of error)

In this oase it is assumed that a constant bias exists in the oontrol
system, such that the actual rocket motor deflection is given by

§ = KEK¥+ szsir -8 - (1.23)

instead of by equation (16). No limiting ococurs in this case sinoce no
initial heeding error is assumed and the bias §; is assumed equal to 1°.
Transformation of equation (I.23) gives

5
5 = 1c1x3'i+xzx3pi~-;i - (T.24)
- 27 =
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end from equation (13) we have

Py = ~KJ o (I.25)

whence vV = e (T.26)

—.-p&i

end ' 5 = — . (x.27)
‘ : P+ L1p + L‘le - '

Transforming equations (18) and (19) and substitubing gives
: 2
(K, - P) 8

= = - | (1.28)
mp”(p” + Lp + LyT,) .

and . 7 = -T-—"B-%’ (1.29)

The trajectories obtained by transforming equations (I.28) and (I.29) into
functions of time aré shown in Fige16 for.the three sets of parameiers corrés-
ponding to £3 = 3, 5 and 10 cyoles per second. Teble XTI gives ¥, 6, x
and y as functions of time for the three cases. ,

Teble XII
Motdon due to 1° bias’

\

1 ! d es
675 _ | § degrees 5 degre

3 || 0,88 [t = ¢35 (005 B57t + 0.9% stn 3576)] || ¢ (0.9% 8in R5TL - 008 Z57C)

5 || 0,36 [t = &5 (005 5515 + 1,025 stn 5.511)] 5e65% (1,025 s4n 5,51% = 608 5.51t)

10 || 0,116 [1 = 9T (cos 9,54t + 1,045 sin 9,548)] | ™+ (1,015 51n 9,54¢ = cos 9,54k)

f? . x fegt .- . ¥ faet
cfs : : 5 o ,

5 || o - .2 = 0,008 o " 12,36

+ 3 duped oselllatory tem .' ‘
5 || 0.1765t% = 0,064t = 0,010 12,32
+ & damped dsquiatoi's; tem .

10 || 0,057%2 = 0,012t =0,0045 ‘ : 12,3

+ & damped oscillatory term

. - 28 ~
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(b) Control system of Fig.2 (with integral of error)

It is assumed in this oase that the rocket motor deflection is given by
8 = KXy fth + KKy + KK - 8y (1.30)

instead of by equation (17). Agein no limiting occurs as all initial con-
ditions are assumed to be zero and &4 is assumed equal to one degree.

The following expressions for ths Lapiaoe transforms of ¥, & and x are
obtained from equations (413), (18) and (I.30):-

X, 8,
v o= % 5 + (T.31)
+ L1p + L1L2p + L1L6
2
- -p 8
PP+ Lyp + L1L2p + L1L6
' 2
T(K,~p)
end o= S . (1.33)

2 2
mp (p‘3 +1yP +L1L2p+L1L6)
¥ is again given by expression (I.29).
The trajeotories cbtained from equations (I.29) and (I.33) are shown
in Fig.17 and Table XIII gives x anl y as functions of time for the
three oases.

Teble XTIT
Motion due to 1° bias

fj x feet y feet

c/s

3 - 8.2 + 3,30t + 8.14.6—0'508t + a damped oscillatory term 12.31:2

5 ~1.29 + 0.83t + 1.31e-o'813t + a damped oscillatory term 12.31:2
~1.37¢ . 2

10 = 0143 + 0157t + 0.137e + a damped oscillatary term || 12.3t

57
- 29 -
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